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Data presented in earlier publications on the 1988 epizootic among seals in North
West Europe show a pattern that is somewhat inconsistent with the predictions of
the standard mathematical model of epidemics. We argue that for animals living in
herds or colonies, such as seals, the mutual contact behaviour is such that models
for the transmission of infectious diseases should be applied with special care for
the distinction between numbers and densities. This is demonstrated by using
a mechanistic description of the contacts among seals, which leads to a slightly
different formulation of the model. Results of the analysis of this formulation are
more in line with the data.

The model introduced here can be applied to epidemics among all kinds of
animals living in herds and in fact to any species with constant local density,
independent of the total population size (i.e., occupying a variable area). Ap-
plication of the traditional formulation, using different parameters for herds of
different sizes, will give equally good results for non-lethal diseases. However,
especially for diseases with a low R0 and high death rates, such as the phocine
distemper virus (PDV) disease, the two model formulations give quite different
results.

Further analysis of the model is performed to determine the most important
factors influencing such an epidemic. The survival of infected animals turns
out to have a disproportionately great influence on the intensity of the epidemic.
Therefore in the case of the PDV epizootic we conclude that marine pollution
may not only have contributed to the high death rates, but, if so, it has intensified
the epizootic as well.

c© 1998 Society for Mathematical Biology

1. INTRODUCTION

On a short timescale (weeks) one can think of seals inhabiting the coastal waters
of Northern Europe as constituting a meta-population, a collection of many local
subpopulations (colonies) loosely coupled by incidental migrations. Within a
colony, contacts are probably at random.
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In the spring and summer of 1988 this meta-population was struck by an in-
fectious disease that caused the death of a substantial fraction of all individuals
(estimates vary from 40 to 60%). A morbilli virus, causing the disease, was
identified by Osterhaus and Vedder (1988) and called phocine distemper virus
(PDV).

The following characteristics appear from data acquired and analysed by Heide-
Jørgensen and Härkönen (1992a).

• Almost all colonies in the studied area suffered from an outbreak.
• The fraction that caught the disease was more or less the same for all

colonies, and in particular independent of the size of the colony (in Eastern
Scotland this fraction was a bit lower). A more elaborate presentation of
these data can be found in Tables 1–3.

While analysing the Kermack and McKendrick (1927) epidemic model in its
traditional form, one arrives at the following conclusions.

• The basic reproduction ratio R0, i.e., the expected number of secondary
cases per primary case in the initial phase of an outbreak is proportional
to the colony size. Hence, since R0 has a threshold value 1, there exists a
critical colony size below which the virus can only cause minor outbreaks
affecting a negligible fraction.
• The final size, i.e., the fraction ultimately infected, increases (nonlinearly)

with R0, hence with colony size (the overshoot is stronger when the peak
is higher, which is the case in larger colonies).

Clearly these general conclusions are at variance with the data [see the above
and Heide-Jørgensen et al. (1992a)]. Harwood and Hall (1990) suggested that
the traditional epidemic model might not be very suitable for this epizootic,
because the periodical aggregation of seals would keep the contact rate rather
high, although ‘density’ might become low. Nevertheless, the traditional model
was applied both by Grenfell et al. (1992) and Heide-Jø rgensen and Härkönen
(1992a). The latter authors achieved a correction of the results by adapting the
key contact parameter to the colony size. They motivated such an adaptation by
noting that ‘seal density within a herd is relatively high regardless of population
size’. A larger colony will simply occupy a larger area during haul-out, while
the effective, local density remains constant. [See also Harada et al., (1995).]

When disease always leads to immunity and never to death, an adaptation of
the contact parameter to colony size is indeed all that is needed to take into
account the fact that numbers may vary wildly while density remains constant
and, more importantly in the present context, contact intensity remains constant.
However, when, as in the case of PDV among seals, a substantial fraction of all
cases ends with death, a slightly more complicated correction is required. In a
sense the adaptation of the contact parameter has to be updated as the colony
becomes smaller due to the virus making victims. In other words, as immunes
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receive part of the contacts of infectives, they serve to protect susceptibles; when
infected individuals die, rather than becoming immune, they do not contribute to
this protection and a larger outbreak is to be expected. This argument suggests
that the final size should not only depend on R0, but also on the probability to
survive an infection.

The aim of this paper is to present the final size equation for a situation of
constant local density as described above and to analyse the data on the PDV
epidemic with this equation as the main tool.

2. MATERIALS AND METHODS

Usually the harbour seal (Phoca vitulina) is solitary in the water, where they
have their own private fishing routes. Social life, if at all, takes place on haul-
out sites; in the Wadden Sea these are the tidal sand banks. When the tide is
out and the banks appear, seals aggregate (and more or less form a row) on the
shore. The virus is thought to spread during this resting period on the banks, so
to formulate a model we will only consider this period.

On the sand banks of the Dutch Wadden Sea the seals typically lie down along
the waterline, thus forming a sort of row. Morbilli viruses are usually transferred
by aerosols secreted while coughing and snarling. In such a system the viruses
are thought not to be able to ‘fly’ very far; only near neighbours of the infectious
animals can be reached. As long as space is not a limiting factor, the typical
nearest-neighbour distance is constant, that is, independent of colony size. When
the colony is not too small boundary effects do not matter very much. Hence,
the per capita contact intensity does not depend on the number of seals hauling
out at the sand bank and in particular it will remain constant when the colony
size decreases during an epidemic. As a consequence, the force of infection (the
probability per susceptible per unit of time of becoming infected) is proportional
to the fraction of seals that is infectious and not to their absolute number. This
is the keypoint underlying the model.

2.1. The model. Morbilli viruses usually induce lifelong immunity, so we will
assume that when a seal recovers from PDV infection, it is fully immunized.
Choose S to represent the number of susceptible seals in the colony. Let I denote
the number of infectious and R denote the number of resistant (immune) animals.
N denotes the total number of seals in the colony, therefore N = S+ I + R.
Note that we describe numbers now, not densities.

Let α denote the average number of contacts of one infectious animal per unit
of time, multiplied by the probability of spreading the infection indeed during
such a contact. β denotes the probability of removal from the infectious class in
one tide period, and f is the (average) survival probability for animals that reach
the end of the infectious period. Then an epidemic in the seal population can be
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described by the following set of differential equations:

dS

dt
=−αS

I

N
(1)

d I

dt
= αS

I

N
− β I (2)

d R

dt
= fβ I f ∈ [0..1] (3)

d N

dt
=−(1− f )β I . (4)

The third equation could actually be left out, as it gives the same information
as the fourth one. Note that for f 6= 1, N is a dynamic variable. For f = 1 we
recover the traditional ordinary differential equation (ODE) form of the Kermack–
McKendrick model.

We derived and analysed this system (De Koeijer, 1993) simultaneously with
Lefèvre and Picard (1993) and Picard and Lefèvre (1993), who gave a detailed
analysis of the model. A more elaborate mathematical study of a general version
of the model can be found in Diekmann et al. (1996). They described the model
in the spirit of the general Kermack–McKendrick model of 1927, which is (it
cannot be stated often enough) far more general than the special case described
by the ODE system.

3. RESULTS

3.1. Analysis. Important information on the initial phase of an epidemic is
given by R0 (by definition, the average number of new infections caused by an
infectious seal living in a completely susceptible population). In this model the
expected infection time is 1/β during which the infectious individual makes new
victims at rate α, therefore R0 is equal to α/β (and independent of population
size). If R0 is smaller than or equal to 1, the infection will soon disappear from
the population. If R0 is larger than 1 an epidemic outbreak may occur.

The situation at the end of the epidemic can be derived from equations (1)
and (4) by integration. We assume that at the start of the epidemic all seals are
susceptible to the disease. Then a relation between the fraction of the population
that survives the epidemic (x), and the fraction of the initial population that does
not get infected at all (y), can be calculated for any combination of the parameters
f and R0 from equations (5) and (6):

(1− f )

R0
ln y= ln x (5)

(1− x)= (1− y)(1− f ). (6)
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Figure 1. The final fraction of survival of the population, x, as it depends on R0, the
reproduction number of the virus, for several different survival rates f .

We see that the final situation is independent of population size N but only
depends on the parameters f and R0. Note that equation (6) has a clear interpre-
tation: the fraction of seals dying as a result of the infection must be equal to the
total fraction that got infected during the epidemic multiplied with the probability
to die due to the infection.

When, conversely, x and y can be estimated from data of a certain epidemic,
then the disease-specific parameters f and R0 can be calculated from:

f = x − y

1− y
(7)

R0 = (1− f ) ln y

ln x
. (8)

In the case of the PDV-seal epizootic, these results are valid for one subpop-
ulation, i.e., one herd. However, during this epizootic all the different herds
in the area of the Wadden Sea, Kattegat and Skagerrak were affected. In all
these herds the epizootic will give equal final fractions, because the size of the
(sub)population does not make any difference, hence the same fractions apply to
the metapopulation.

Graphical representations of the final fractions under varying parameter values
(Figs 1 and 2) show the influence of the parameters f and R0 on the outcome
of the epidemic. As to be expected, f is the parameter that influences the final
fractions x and y the most. For an R0 smaller than 2 we can see that there is
quite a substantial influence of the precise value of R0, but for higher values only
the value of f really makes a difference.
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Figure 2. The fraction of the population that remains susceptible, y, as it depends on
R0, the reproduction number of the virus, for several different survival rates f .
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Figure 3. Total deaths in the population with different modelling assumptions while
R0 = 2.2. The straight line takes only account of the direct effect, as it simply multiplies
the final size for f = 1 by the probability 1 − f to die. The curved upper line gives
the fraction of the population that dies from the disease, according to (2.10) and (2.11)
and so takes account of both effects. We see that the indirect effect is quite important
for low survival (i.e., when 1− f is large).
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The main difference between the predictions of the current model and those of
the more traditional variant lies in the influence of the survival probability. If all
animals survive the disease ( f = 1), then N will be constant and the traditional
formulation is obtained. For diseases inducing high mortalities, the difference
can be quite substantial. This is shown in Fig. 3, which illustrates the (different)
final fractions in one plot: the total fraction of the population that died due to
the disease (1− x) as it depends on the value of f . For very small R0 and low
f the difference is very large, so obviously in such cases it is really important
to make the right assumptions. For R0 higher than 3, the difference in the total
number of deaths is very small.

However, for very high death rates, the influence depends on what is considered
the most important factor: the fraction that died or the fraction that survived the
epidemic. Under certain conditions survival may be estimated at 1% under the
current model and 2% for the traditional model, a substantial difference, while
the total fraction of deaths in these cases, 98% or 99% are almost equal. The
survival seems to be more important from a conservation biology point of view,
while farmers might consider the fraction of deaths more important.

3.2. Parameter estimates.To see what new information this model can supply
in the case of the PDV epidemic, we analysed available data from literature,
which leads to the parameter estimates as displayed in Tables 1–3. Unfortunately
there was a limited amount of data available, coming from many sources and
collected with different aims and methods, so large variance in the results is to
be expected.

Table 1. Denmark. Values for f and R0 are calculated from x (overall survival) and y
(fraction escaping infection) estimates. These estimates are taken from the literature.

Location x y f R0

Koster 0.38 0.05 0.33 2.1
Varberg 0.38 — — —
Hesselø 0.40 0.01 0.39 3.0
Anholt 0.33 0.03 0.31 2.4
Måkläppen 0.41 <0.03 0.4 >2.3

Table 2. Kattegat and Waddensea area. Values for f and R0 are calculated from x
(overall survival) and y (fraction escaping infection) estimates. These estimates are
taken from the literature.

Location x y f R0

Netherlands 0.44 0.03 0.42 2.5
Niedersachsen 0.50 0.03 0.48 2.6
Schlesw.H 0.39 0.03 0.37 2.3
Denmark 0.49 0.03 0.47 2.6
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Table 3. Great Britain. Values for f and R0 are calculated from x (overall survival) and
y (fraction escaping infection) estimates. These estimates are taken from the literature.

Location x y f R0

East Anglia 0.52 0.03 0.51 2.6
Irish Sea 0.60 0.03 0.59 2.8
Scotland 0.90 0.16 0.88 2.1

The data, used to determine x in the different regions, come from estimated
numbers before and after the epidemic. The number of carcasses found in dif-
ferent areas was a second, though equally unreliable, indicator for x. Estimates
for y come from other sources: Heide-Jø rgensen and Härkönen (1992a) offered
information on pup survival rates, which supplies an estimate for the fraction of
seals that escaped infection, assuming that if a mother gets infected, its pup will
surely die. This death rate, of course, has to be related to ‘normal’ pup survival
rates.

Their detailed data on several different colonies are embodied in Table 1 (see
Dietz et al., 1989; Heide-Jø rgensen and Härkönen, 1992a; Heide-Jø rgensen
et al., 1992b). In Table 2, x estimates from our own data (Reijnders and

Lankester, 1990) are combined with an overall estimate for y, an average of
all the relevant data we could find. Table 3 shows data and parameter estimates
for Great Britain only. Antibody tests on blood samples collected in 1989 supply
good information to estimate y in that area, Harwood et al. (1989). Here y can
be calculated from the data as y = ŷx, where ŷ denotes the fraction of seals with
antibodies in the (sampled) group of survivors.

Using the more traditional formulation, one would determine f exactly as we
did in (6) and (7). In that situation R0 would be as follows

R0 = 1− x ln(y)

1− y ln(x)
. (9)

Then, when comparing the data of the outbreak in the Wadden Sea and Kattegat
area with the Scottish data, under these model assumptions, survival rate f is
also estimated half as high in the Wadden Sea but R0 is estimated about 50%
higher (3.6 vs. 2.2) in the Wadden Sea area. The difference with the parameter
estimates from the model formulation as described in this article lies in the R0

estimate only. Our R0 estimates are almost equal for all the different regions.

3.3. Sensitivity analysis.For the data gathered on the seal epizootic (tables 1–
3), we cannot really give a proper confidence interval, because the unreliability
of these estimates is mostly in the methods used to determine them. However,
a sensitivity analysis of the parameter estimates for R0 and f will reveal their
dependence on x and y, and hence their sensitivity to variation in these variables.
The matrix A of partial derivatives of f and R0 with respect to x and y is given
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by (10)

A =
(

∂ f
∂x

∂ f
∂y

∂R0
∂x

∂R0
∂y

)
=
(

1
1−y

x−1
(1−y)2

(x−1−x ln x) ln y
(1−y)x ln2 x

(1−x)(1−y+y ln y)
(1−y)2 y ln x

)
. (10)

For the Wadden Sea area, with x = 0.4 and y = 0.03 (and local estimates
f = 0.38 and R0 = 2.4), we find:

A =
(

1. 0 −0. 64
2. 5 −20

)
. (11)

We see that for the relevant magnitude of x and y, the error in the estimate of f
has a contribution which is more or less equal to the error in x and a contribution
less than the error in y (but reversed, increase of y gives decrease of f ). The
error in the estimate of R0 depends strongly on y, but as R0 is also an order 100
larger, the final error due to y remains relatively small.

This can be seen better from the matrix with relative sensitivities again evalu-
ated at x = 0.4 and y = 0.03:(

x
f
∂ f
∂x

y
f
∂ f
∂y

x
R0

∂R0
∂x

y
R0

∂R0
∂y

)
=
(

1.1 −0.050
0.42 −0.25

)
. (12)

This shows that the relative error in x is slightly amplified (1.1 times) in the
estimate of f and is reduced in the estimate of R0. The error in y reduces
strongly for both estimates, f and R0. Thus we see that the estimates of the
parameters f and R0 are not very sensitive to errors in the collected data.

4. DISCUSSION AND CONCLUSIONS

The model we describe here is, we admit, very crude and superficial. It certainly
does not describe exactly what happens in ‘real life’, but it offers a convenient
frame to organize one’s thoughts about the key issues of a certain epidemic.
Therefore we think that this model will be a good tool in the study of infectious
diseases in species with gregarious behaviour.

From Figs 1 and 2 we can see that the most important parameter in the de-
velopment of the epizootic is f , the survival probability of infected seals. If
survival f is small, obviously more seals will die as a consequence of the in-
fection. However, as can be seen in Fig. 3, the total number of deaths will be
disproportionately larger, because the total fraction (1− y) of seals that become
infected during the epizootic is higher, due to a positive feedback in the system.
If the survival rate f is low, then the fraction of susceptible seals will remain
high during the epidemic and therefore the force of infection will also remain at
a higher level. With higher survival rates, a susceptible will have more contacts
with immunized (recovered) animals, thus reducing the number of contacts with
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infectious individuals and lowering the force of infection. This feature of such
an epidemic is supported by data of the PDV-epizootic from Scotland, where,
compared with the Wadden Sea, higher survival x was found in combination with
lower prevalence of PDV antibodies, i.e., lower y (Harwood et al., 1989).

The importance of careful modelling of contact behaviour is shown by the dif-
ferent results that are obtained when making a (seemingly) minor change in mod-
elling these contacts. We repeat that, in populations with gregarious behaviour,
local density should be used in modelling contacts, because local density may
divert enormously from the overall density of the species.

The previously described contradictions between model and data (Heide-
Jø rgensen and Härkönen, 1992a) are explained by applying this new model to
the data. The parameter estimates show little variation over the different colonies,
although the difficulty of estimating y results in a rather low precision of R0. A
minimal group size needed to allow for an epidemic does not exist, but all seals
seem to live at local densities well above the minimal density needed to sustain
an epidemic. An epidemic according to this model will follow the same pattern
in all colonies and (sub)populations, independent of their size. In an equal time
interval, an equal fraction of the population will become infected. Obviously,
stochastic differences will cause small differences between those colonies, but
these will be reduced by averaging over several colonies in a region. As none
of the colonies in the affected area managed to escape from a large outbreak,
we conclude that the contact rate between colonies must have been high. More
distant colonies in Norway and the Baltic Sea remained free from infection; very
low local density or low migration to and from the affected area may explain
their lucky escape.

Although colonies in the Wadden Sea, Kattegat and Skagerrak seem to be af-
fected equally, data from Great Britain display different results (Table 3). Only
about 15% of the Scottish population died during the epidemic, but even there the
intensity of the epidemic was still quite high (Thompson and Miller, 1992). Previ-
ously suggested explanations for this include the timing of the infection in relation
to seasonal behaviour and the presence of secondary infections (Kennedy, 1990).
Thompson and Miller (1992) concluded that it must have been due to either a mu-
tation of the virus or higher resistance of the Scottish seals against the infection.

Comparison of our parameter estimates in the different areas shows that survival
f is much higher in Scotland, while R0 estimates are almost equal in all areas.
The differences in survival could be explained by the different levels of pollution.
Hall et al. (1992) postulated that high organochlorine levels were associated
with higher mortality from PDV, although a direct link could not be established.
Reduction of immune functions of seals feeding from the heavily polluted Baltic
sea has been shown by De Swart et al. (1994), Ross et al. (1995) and De Swart
(1995). These reduced immune functions may explain higher case mortality
(1 − f ) in more polluted areas as the Wadden Sea, Irish Sea, Kattegat and
Skagerrak. Parameter estimates show that survival f in Scotland is much higher.
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As, under our model assumptions, R0 turns out to be quite constant in all areas,
mutation of the virus during the epizootic seems unlikely.

Although other suggested influences, as mentioned above, should not be ne-
glected altogether, we conclude that the model presented here, explains the strik-
ing features of the PDV-seal epizootic very well.
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